Kahane-Khinchin’s inequality for quasi-norms

نویسنده

  • A. E. Litvak
چکیده

We extend the recent results of R. Lata la and O. Guédon about equivalence of Lq-norms of logconcave random variables (KahaneKhinchin’s inequality) to the quasi-convex case. We construct examples of quasi-convex bodies Kn ⊂ IRn which demonstrate that this equivalence fails for uniformly distributed vector on Kn (recall that the uniformly distributed vector on a convex body is logconcave). Our examples also show the lack of the exponential decay of the “tail” volume (for convex bodies such decay was proved by M. Gromov and V. Milman).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On RIC bounds of Compressed Sensing Matrices for Approximating Sparse Solutions Using ℓq Quasi Norms

This paper follows the recent discussion on the sparse solution recovery with quasi-norms lq, q ∈ (0, 1) when the sensing matrix possesses a Restricted Isometry Constant δ2k (RIC). Our key tool is an improvement on a version of “the converse of a generalized Cauchy-Schwarz inequality” extended to the setting of quasi-norm. We show that, if δ2k ≤ 1/2, any minimizer of the lq minimization, at lea...

متن کامل

The Khinchin–kahane Inequality and Banach Space Embeddings for Metric Groups

We extend the Khinchin–Kahane inequality to an arbitrary abelian metric group G . In the special case where G is normed, we prove a refinement which is sharp and which extends the sharp version for Banach spaces. We also provide an alternate proof for normed metric groups as a consequence of a general “transfer principle”. This transfer principle has immediate applications to stochastic inequal...

متن کامل

Maximal Inequalities of Kahane-Khintchine’s Type in Orlicz Spaces

Several maximal inequalities of Kahane-Khintchine’s type in certain Orlicz spaces are proved. The method relies upon Lévy’s inequality and the technique established in [14] which is obtained by Haagerup-Young-Stechkin’s best possible constants in the classical Khintchine inequalities. Moreover by using Donsker’s invariance principle it is shown that the numerical constant in the inequality dedu...

متن کامل

Bell-type inequalities for parametric families of triangular norms

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library In recent work we ha...

متن کامل

Linear programming on SS-fuzzy inequality constrained problems

In this paper, a linear optimization problem is investigated whose constraints are defined with fuzzy relational inequality. These constraints are formed as the intersection of two inequality fuzzy systems and Schweizer-Sklar family of t-norms. Schweizer-Sklar family of t-norms is a parametric family of continuous t-norms, which covers the whole spectrum of t-norms when the parameter is changed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004